متسلسلة (رياضيات)

من أرابيكا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث

في الرياضيات، المتسلسلة[1] أو السلسلة[1] (بالإنجليزية: Series)‏ هي مجموع لمتتالية من الحدود حيث قد تكون هذه الحدود أعداداً أو دالات.[2][3][4]

Sn=a0+a1+a2++an=k=0nak

يتم توليد حدود المتسلسلة عادة من خلال قاعدة معينة أو صيغة رياضية أو خوارزمية أو تعاقب من القياسات أو حتى بواسطة توليد الأعداد العشوائية مثلا. عندما يكون هناك حدود لانهائية فإن المتسلسلة تدعى متسلسلة لانهائية. على عكس المجاميع المنتهية، تحتاج المتسلسلات لفهم وتخطيط بعض أدوات التحليل الرياضي.

خصائص أساسية

يمكن لحدود السلسلة أن تتألف من أي من المجموعات المختلفة بما فيها الأعداد الحقيقية والأعداد المركبة والدوال. التعريف المستعمل هنا سيكون للأعداد الحقيقية ولكنه قابل للتعميم.

بدلالة تعاقب لانهائي من الأعداد الحقيقية تعرف { an }

SN=n=1Nan=a1+a2+a3++aN.

تدعى SN المجموع الجزئي لـ N من التتابعاتan }, أو المجموع الجزئي للسلسلة . سلسلة تعاقب مجاميع جزئية, { SN }.

اختبارات التقارب

هناك عدة اختبارات لمعرفة فيما إذا كانت المتسلسة متقاربة أو متباعدة. من هذه الطرق ما يلي:

انظر إلى تقارب مطلق وإلى اختبار دِيني.

متسلسلات الدوال

متسلسلة القوى

n=0an(xc)n.

متسلسلة لورنت

n=anxn.

متسلسلة دركليه

n=1anns,

متسلسلة مثلثية

متسلسلة مثلثية مي متسلسلة دوال حيث الحدود هي دوال مثلثية.

12A0+n=1(Ancosnx+Bnsinnx).

أهم مثال على المتسلسلات المثلثية متسلسلة فورييه.

تاريخ نظرية المتسلسلات غير المنتهية

تطور المتسلسلات غير المنتهية

عالم الرياضيات الإغريقي أرخميدس أبدع أول مجموع غير منته معروف. انظر إلى طريقة الاستنفاد.

تعميمات

المتسلسلة المتباعدة

المتسلسلات في فضاء بناخ

انظر إلى فضاء باناخ.

مراجع

  1. ^ أ ب "LDLP - Librairie Du Liban Publishers". www.ldlp-dictionary.com. مؤرشف من الأصل في 2019-03-30. اطلع عليه بتاريخ 2019-03-30.
  2. ^ O'Connor, J.J.؛ Robertson, E.F. (فبراير 1996). "A history of calculus". جامعة سانت أندروز. مؤرشف من الأصل في 2018-06-22. اطلع عليه بتاريخ 2007-08-07. {{استشهاد ويب}}: الوسيط غير المعروف |lastauthoramp= تم تجاهله يقترح استخدام |name-list-style= (مساعدة)
  3. ^ Choquet، Gustave (1966). Topology. Academic Press. ص. 216–231. ISBN:9780121734503.
  4. ^ On convergence of the Flint Hills series, arXiv:1104.5100, 2011. نسخة محفوظة 01 ديسمبر 2017 على موقع واي باك مشين.

انظر أيضًا