هندسة إهليلجية

من أرابيكا، الموسوعة الحرة

هذه هي النسخة الحالية من هذه الصفحة، وقام بتعديلها عبد العزيز (نقاش | مساهمات) في 17:54، 3 يونيو 2023 (بوت: إصلاح أخطاء فحص أرابيكا من 1 إلى 104). العنوان الحالي (URL) هو وصلة دائمة لهذه النسخة.

(فرق) → نسخة أقدم | نسخة حالية (فرق) | نسخة أحدث ← (فرق)
اذهب إلى التنقل اذهب إلى البحث

الهندسة الإهليلجية (بالإنجليزية: Elliptic geometry)‏، أحياناً يطلق عليها هندسة ريمان، هي نوع من الهندسة اللاإقليدية بحيث من أجل أي مستقيم L ونقطة p لا تقع على المستقيم L، فإنه لا يوجد أي مستقيم مواز لـ L يمر من p.[1]

إن الهندسة الإهليلجية تخرق مسلمة التوازي الإقليدية، تماماً مثل الهندسة الزائدية والتي تنص على أنه يوجد مستقيم واحد فقط موازٍ للمستقيم L يمر من p. حيث في الهندسة الإهليلجية لايوجد مستقيمات متوازية على الإطلاق. على سبيل المثال، خطوط الطول على سطح الكرة الأرضية. للهندسة الإهليلجية خصائص فريدة، على سبيل المثال إن مجموع زوايا أي مثلث يكون أكبر من 180 درجة.

مراجع

انظر أيضا