تضامنًا مع حق الشعب الفلسطيني |
عمليات التعلم الآلي
هذه مقالة غير مراجعة.(مايو 2021) |
عمليات التعلم الآلي (MLOPs) هي عملية أخذ نموذج تعلم الآلة التجريبي إلى نظام الإنتاج.[1] الكلمة عبارة عن مركب من «التعلم الآلي» وممارسة التطوير المستمر لـديف أوبس في مجال البرمجيات. يتم اختبار نماذج التعلم الآلي وتطويرها في أنظمة تجريبية معزولة. عندما تكون الخوارزمية جاهزة للتشغيل، تمارس هذه العمليات بين علماء البيانات وديف أوبس ومهندسي التعلم الآلي لنقل الخوارزمية إلى أنظمة الإنتاج.[2] على غرار ديف أوبس أو داتا أوبس النهج وتسعى عمليات التعلم الآلي في زيادة عمليات الأتمتة وتحسين نوعية إنتاج النماذج، مع التركيز أيضا على متطلبات العمل والتنظيمية. بينما بدأت العمليات كمجموعة من أفضل الممارسات، فإنه يتطور ببطء إلى نهج مستقل لإدارة دورة حياة ML. ينطبق MLOps على دورة الحياة بأكملها - بدءًا من التكامل مع إنشاء النموذج (دورة حياة تطوير البرامج، والتكامل المستمر / التسليم المستمر)، والتنسيق والنشر إلى الصحة والتشخيص والحوكمة ومقاييس الأعمال.
مراجع
- ^ AWS re:Invent 2020: Scaling MLOps on Kubernetes with Amazon SageMaker Operators (بEnglish), Archived from the original on 2021-04-21, Retrieved 2021-04-19
- ^ Talagala، Nisha. "Why MLOps (and not just ML) is your Business' New Competitive Frontier". AITrends. AITrends. مؤرشف من الأصل في 2021-01-19. اطلع عليه بتاريخ 2018-01-30.