شبكة برافيه

من أرابيكا، الموسوعة الحرة

هذه هي النسخة الحالية من هذه الصفحة، وقام بتعديلها عبد العزيز (نقاش | مساهمات) في 13:00، 18 سبتمبر 2023 (Reformat 1 URL (Wayback Medic 2.5)) #IABot (v2.0.9.5) (GreenC bot). العنوان الحالي (URL) هو وصلة دائمة لهذه النسخة.

(فرق) → نسخة أقدم | نسخة حالية (فرق) | نسخة أحدث ← (فرق)
اذهب إلى التنقل اذهب إلى البحث

في الهندسة وعلم البلورات، شبكة تبلور برافيه (بالإنجليزية: Bravais lattice)‏ هي مجموعة نقاط منتظمة لا نهائية في الفراغ، يسهل وصفها عن طريق مسافات بينية متساوية أو إزاحات متماثلة في الطول وزاوية الإزاحة.[1][2] يمكن وصف مجموعة النقاط المنتظمة بالعلاقة الآتية:

R=n1a1+n2a2+n3a3

حيث ni عدد صحيح

و ai وحدة متجه في الاتجاه i.

وحدة متجه (يمين)، هي خطوة في اتجاه ما وليكن إلى اليمين. فإذا خطونا ثلاثة خطوات إلى اليمين، وصلنا إلة نقطة الشبكة الثالثة إلى اليمين.

وحدة متجه (أمام)، هي خطوة إلى الامام. فإذا خطونا سبعة خطوات إلى الأمام وصلنا إلى نقطة الشبكة السابعة في الأمام.

حتي الآن نستطيع وصف نقاط الشبكة في المستوي س، ص (أي يمين - يسار وأمام -خلف). ولوصف شبكة في الفراغ، لا بد من ادخال وحدة متجه (أعلى). وهذا هو مضمون المعادلة أعلاه، التي تصف توزيع نقاط الشبكة على المحاور الثلاثة: س، ص، ع.

قام العالم أوجوست برافيه عام 1850 بدراسة تلك الإزاحات المتساوية، وصاغ المعادلة أعلاه. وظهرت أهميتها من حيث دراسة البلورات، لأن البلورات الكبيرة العينية ماهي إلى تكرار لبلورات صغيرة لها نفس الشكل تسمي وحدة خلية.

في البلورة العينية كما في معادلة بارفيه، تبدو الشبكة متشابهة تماما عند نهاية كل متجه Rj.

تطبيق المعادلة على البلورات

تتكون البلورة من ذرة أو أكثر تكرر نفسها على نقاط الشبكة البلورية. ولذلك تبدو البلورة بنفس الشكل عند رؤيتها من أي نقطة على الشبكة.

ويختص شبكة برافيه بمجموعة أشكال متناظرة. وعند قيامه بدراستها توصل إلى وجود 14 نوع من تلك الشبكات الفراغية. وقد توصل إلى ذلك على أساس تغيير كل من وحدة المتجه: يمين، أمام، أعلى. (مثلا وحدة متجه يمين: خطوة حصان، ووحدة متجه أمام: خطوة خروف، ووحدة متجه أعلى: خطوة عنز). ذلك بالإضافة إلى أخذه زاوية الإزاحة في الاعتبار.

شبكات برافيه الفراغية

تبين الجدول الآتي شبكات برافيه الأربعة عشر. وهي قائمة على 7 أنظمة لتلك الشبكات أو المحاور. وقد روعي ملء كل نقطة من نقاظ الشبكة بذرة واحدة. وأحيانا كما يوجد في طبيعة البلورات يمكن أن تشغل ذرة ثانية وسط الخلية Body centered أو أحد أوجه وحدة الخلية.

كيفية إشغال الخلية (بالذرات) كالآتي lattice centerings وينطبق ذلك على جميع الأنظمة أسفله:

  • Primitive centering (P): الذرات تشغل الزوايا فقط،
  • Body centered (I): ذرة ثانية تشغل وسط الخلية،
  • Face centered (F): ثلاث ذرات إضافية يشغلون جميع أوجه الخلية، * C centering: ذرة إضافية تشغل قاعدة الخلية.
The 7 lattice systems The 14 Bravais lattices
نظام بلوري ثلاثي الميل P
Triclinic
نظام بلوري أحادي الميل P C
Monoclinic, simple Monoclinic, centered
نظام بلوري معيني قائم P C I F
Orthohombic, simple Orthohombic, base-centered Orthohombic, body-centered Orthohombic, face-centered
نظام بلوري رباعي P I
Tetragonal, simple Tetragonal, body-centered
نظام بلوري سداسي
P
Rhombohedral
نظام بلوري سداسي P
Hexagonal
نظام بلوري مكعب
P (pcc) I (bcc) F (fcc)
Cubic, simple Cubic, body-centered Cubic, face-centered


يمكن حساب حجم وحدة الخلية للسبعة أنظمة من الشبكات بواسطة العلاقة:

ab×c

حيث:

a و b و c

هي وحدات المتجه (مقاييس وحدة الخلية

وتعطي القائمة أسفله حجم كل من وحدات الخلايا، طبقا لشبكة تبلور برافيه:

Lattice system Volume
نظام بلوري ثلاثي الميل abc1cos2αcos2βcos2γ+2cosαcosβcosγ
نظام بلوري أحادي الميل abcsinα
نظام بلوري معيني قائم abc
نظام بلوري رباعي a2c
نظام بلوري ثلاثي a313cos2α+2cos3α
نظام بلوري سداسي 33a2c2
نظام بلوري مكعب a3


طرق تعيين البناء البلوري

الدراسات التي تقوم بتعيين البناء البلوري للأملاح والمعادن تعتمد على طرق القياس الآتية:

كما يمكن تعيين البناء البلوري المغناطيسي بواسطة حيود النيوترونات.

اقرأ أيضا

مراجع

  1. ^ Aroyo، Mois I.؛ Müller، Ulrich؛ Wondratschek، Hans (2006). "Historical Introduction". International Tables for Crystallography. Springer. ج. A1 ع. 1.1: 2–5. DOI:10.1107/97809553602060000537. مؤرشف من الأصل في 2013-07-04. اطلع عليه بتاريخ 2008-04-21.
  2. ^ Kittel، Charles (1996) [1953]. "Chapter 1". Introduction to Solid State Physics (ط. Seventh). New York: John Wiley & Sons. ص. 10. ISBN:0-471-11181-3. مؤرشف من الأصل في 2010-06-04. اطلع عليه بتاريخ 2008-04-21.