نظام عد أحادي

من أرابيكا، الموسوعة الحرة

هذه هي النسخة الحالية من هذه الصفحة، وقام بتعديلها عبد العزيز (نقاش | مساهمات) في 11:08، 16 فبراير 2021 (بوت:إصلاح رابط (1)). العنوان الحالي (URL) هو وصلة دائمة لهذه النسخة.

(فرق) → نسخة أقدم | نسخة حالية (فرق) | نسخة أحدث ← (فرق)
اذهب إلى التنقل اذهب إلى البحث


بعض أشكال نظام العد الأحادي لتمثيل العدد 8.
الرمز 正 (ويعني كلمة صحيح) يستخدم في دول اليابان، الصين، وكوريا للتعبير بشكله الكامل عن الرقم 5.

نظام العد الأحادي (بالإنجليزية: Unary Numeral System)‏ هو نظام للعد ذو أساس أحادي.[1] يعتبر هذا النظام من أبسط أنظمة العد لتمثيل الأعداد الطبيعية، حيث من أجل تمثيل أي عدد N، يتم تكرار رمز معين يمثل العدد 1 لـ N مرة. على سبيل المثال، باستخدام الرمز | (رمز العصا) فيمكن تمثيل العدد 6 على الشكل ||||||. الطريقة البسيطة للعد بهذه الطريقة هي استخدام الأصابع. يفيد هذا النظام في عد النتائج أثناء حدوثها، مثل عد النقاط في مباراة رياضية، وذلك لعدم الحاجة إلى مسح أو تعديل أي نتيجة متوسطة وإنما تكون النتيجة النهائية هي الهامة للحكم على نتيجة المباراة. عادة ما يتم تجميع الرموز الأحادية في مجموعات لإنشاء مجموعات أعداد من أجل تسهيل العد الأخير، وهذه العملية تشابه وظيفة الفراغات أو الفاصلة العشرية في نظام العد العشري.

من الممكن القيام بعمليات الجمع، والطرح بسهولة كبيرة في هذا نظام العد الأحادي، بينما عمليتي الضرب والقسمة تتطلب جهداً أكبر.

لا يوجد أي رمز يمثل العدد صفر في نظام العد الأحادي. بمقارنة هذا النظام مع أنظمة العد ذات المراتب (نظام العد الثنائي، نظام العد العشري.. الخ) فإن هذا النظام هو غير مناسب عملياً وخصوصاً في الحسابات الضخمة.

مراجع

  1. ^ Codingame نسخة محفوظة 27 أبريل 2015 على موقع واي باك مشين.