تغير الضغط بالارتفاع

من أرابيكا، الموسوعة الحرة
(بالتحويل من Barometric formula)
اذهب إلى التنقل اذهب إلى البحث
تغير الضغط بالمليمتر زئبق بتغير الارتفاع حتى ارتفاع 12000 متر.

الصيغة البارومترية أو الأس الجوي هي صيغة نموذج رياضي تبين مدى تغير ضغط الهواء مع الارتفاع.[1][2][3] تتغير كثافة الهواء وبالتالي يتغير الضغط الجوي بالارتفاع عن سطح الأرض. ويمكن القول بالتقريب أن الضغط الجوي ينخفض بمعدل 1 هكتوباسكال (أي 100 باسكال) كلما ارتفعنا 8 أمتار عن سطح الأرض.

الصور الرياضية

صيغة الضغط

توجد معادلتان لحساب الضغط على ارتفاعات مختلفة (حتى 86 كم). تستعمل الأولى عندما لا يكون معدل انخفاض درجة الحرارة القياسية صفرا مع الارتفاع، بينما الثانية عندما نعتبر تغير درجة الحرارة بالارتفاع صفرا. (درجة الحرارة القياسية 15 درجة مئوية وتعادل 288 كلفن).

المعادلة الأولى:

P=Pb[TbTb+Lb(hhb)]g0MR*Lb

المعادلة الثانية:

P=Pbe[g0M(hhb)R*Tb]

حيث

Pb = الضغط الساكن (باسكال)
Tb = الحرارة القياسية (كلفن)
Lb = معدل هبوط الحرارة القياسية (كلفن لكل متر)
h = الارتفاع فوق مستوى سطح البحر (بالأمتار)
hb = الارتفاع في قاع الطبقة b (بالأمتار، مثلا, h1 = 11,000 متر)
R* = ثابت الغاز للهواء: 8.31432 نيوتن·متر / (مول·كلفن)
g0 = التسارع الأرضي (9.80665 م/ث²)
M = كتلة هواء الأرض الجزيئية (0.0289644 كيلوغرام/مول)

معادلات الكثافة

تشبه تعبيرات حساب الكثافة تلك المستخدمة في حساب الضغط إلى حد كبير والفرق الوحيد هو الأس في المعادلة الأولي. المعادلة الأولى:

ρ=ρb[TbTb+Lb(hhb)](g0MR*Lb)+1

المعادلة الثانية:

ρ=ρbexp[g0M(hhb)R*Tb]

حيث

ρ = كثافة الكتلة (كغ/م³)
T = الحرارة القياسية (كلفن)
Lb = معدل هبوط الحرارة القياسية (كلفن لكل متر)
h = الارتفاع فوق مستوى سطح البحر (بالأمتار)
R* = ثابت الغاز للهواء: 8.31432 نيوتن·متر / (مول·كلفن)
g0 = التسارع الأرضي (9.80665 م/ث²)
M = كتلة هواء الأرض الجزيئية (0.0289644 كيلوغرام/مول)

تعيين دالة التغير

وحدة الحجم والقوى المؤثرة عليه من أعلى وأسفل.

نتخيل حجما dV من الهواء في شكل مكعب ذو ضلع طوله A يحتوي على هواء كثافته ρ ونتخيل تغير بسيط في الارتفاع مقداره dh. تعمل على السطح من أسفل قوة الضغط الجوي p وتبلغ بالنسبة للمساحة المختارة pA. وأما القوة المؤثرة على المساحة الأرضية للمكعب من أعلى فهي تتكون من القوة الناشئة عن وزن كمية الهواء في المكعب dm بالإضافة إلى ضغط الجو الماثل على المساحة من أعلى p+dp). A).

في حالة التوازن حيث لا يحدث تغير في حالة مكعب الهواء تحت النظر نحصل على معادلة القوى:

pAρgdhA(p+dp)A=0

dmg=ρdVg=ρgdhA

dV=Adh

حيث g عجلة الجاذبية الأرضية (81 و9 متر /ثانية/ثانية). وبتغيير طرفي المعادلة نحصل على:

dpdh=ρg

وبمراعاة قانون الغازات في حالة الغاز المثالي، يمكننا كتابة كثافة الهواء ρ كالآتي:

ρ=pMRT

فنحصل على:

   
dpdh=pMgRT

M كتلة مولية لغازات الجو (0,02896 kg mol−1),

R ثابت الغازات = 8,314 J K−1 mol−1

T درجة الحرارة كلفن

تعطي هذه المعادلة كمية تغير الضغط dh عندما يتغير الارتفاع تغيرا طفيفا dh.وكما تبين علامة الناقص لتغير الضغط بالناقص عندما يزيد الارتفاع. أي ينقص الضغط بزيادة الارتفاع عن سطح الأرض. وبناء على ذلك يقل متوسط الضغط الجوي على مستوى البحر (p = 1013 hPa) عند درجة حرارة 288 كلفن (15 درجة مئوية) بمقدار 12 و0 هكتوباسكال لكل متر نرتفعه، أي بمعدل 100 باسكال لكل 3 و8 متر فرق للارتفاع.وعند الارتفاعات الكبيرة يقل كثافة الهواء كما تتغير درجة الحرارة بالارتفاع، فيقل معدل تغير الضغط بالارتفاع.

اشتقاق تقريبي

بافتراض ثبات درجة الحرارة T ، واجراء التكامل في المعادلة السابقة نحصل على:

p(h0)p(h1)dpp=MgRTh0h1dh
ln(p(h1)p(h0))=MgRT(h1h0)=MgRTΔh
p(h1)p(h0)=eMgRTΔh
p(h1)=p(h0)eMgRTΔh

وباجراء التبسيط بواسطة ما يسمى مدرّج الارتفاع hs نحصل على :

hs=RTMg
   
p(h1)=p(h0)eΔhhs

فكل زيادة للارتفاع بمقدار hs يقل الضغط الجوي بمقدار e2,7. لهذا يعتبر مدرّج الارتفاع مقياس طبيعي للضغط الجوي وتغيره. وهو يبلغ في مثالنا الحالى عند درجة حرارة 15 مئوية 8.4 كيلومتر.

كما ينطبق ذلك على تغير كثافة الهواء بالارتفاع :

   
ρ(h1)=ρ(h0)eΔhhs

حيث:

ρ(h0) كثافة الهواء عند سطح البحر

ρ(h1) كثافة الهواء عند العلوh1.

اقرأ أيضا

مراجع

  1. ^ U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C., 1976. (Linked file is 17 Mb) نسخة محفوظة 01 فبراير 2014 على موقع واي باك مشين.
  2. ^ Braeunig، Robert. "ATMOSPHERIC MODELS". Rocket and Space Technology. مؤرشف من الأصل في 2017-12-16.
  3. ^ Stull، Roland. Practical Meteorology (PDF). ص. 12. مؤرشف من الأصل (PDF) في 2017-06-29.