ملف:Transmission line animation.gif

من أرابيكا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث

Transmission_line_animation.gif(300 × 100 بكسل حجم الملف: 112 كيلوبايت، نوع MIME: image/gif، ‏ملفوف، ‏30 إطارا، ‏1٫8ث)

ملخص

الوصف
English: A lossless transmission line, terminated at an impedance-matched load resistor (box on right). Red color indicates high voltage, and blue indicates low voltage. Black dots represent electrons. (See also File:Transmission_line_animation3.gif for a newer and simpler version.)
التاريخ
المصدر عمل شخصي
المؤلف Sbyrnes321

ترخيص

أنا، صاحب حقوق التأليف والنشر لهذا العمل، أنشر هذا العمل تحت الرخصة التالية:
Creative Commons CC-Zero هذا الملف متوفر تحت ترخيص المشاع الإبداعي CC0 1.0 الحقوق العامة.
لقد وَضَعَ صاحب حقوق التَّأليف والنَّشر هذا العملَ في النَّطاق العامّ من خلال تنازُلِه عن حقوق العمل كُلِّها في أنحاء العالم جميعها تحت قانون حقوق التَّأليف والنَّشر، ويشمل ذلك الحقوق المُتَّصِلة بها والمُجاورة لها برمتها بما يتوافق مع ما يُحدده القانون. يمكنك نسخ وتعديل وتوزيع وإعادة إِنتاج العمل، بما في ذلك لأغراضٍ تجاريَّةٍ، دون حاجةٍ لطلب مُوافَقة صاحب حقوق العمل.

Source code

"""
(C) Steven Byrnes, 2013. This code is released under the MIT license
http://opensource.org/licenses/MIT

This code runs in Python 2.7 or 3.3. It requires imagemagick to be installed;
that's how it assembles images into animated GIFs.
"""

from __future__ import division 

import pygame as pg
from numpy import cos, pi, sin, asarray

import subprocess, os
directory_now = os.path.dirname(os.path.realpath(__file__))

frames_in_anim = 30
animation_loop_seconds = 2 #time in seconds for animation to loop one cycle

bgcolor = (255,255,255) #white
linecolor = (0,0,0) #outline of resistor is black
ecolor = (0,0,0) #electron color is black

img_height = 100
img_width = 300

#transmission line wire length and thickness, and y-coordinate of each wire
tl_length = img_width * 6//7
tl_thickness = 5
tl_top_y = img_height*4//9
tl_bot_y = img_height*5//9 - tl_thickness//2 #second term is to keep it symmetric

wavelength = 0.6 * tl_length

resistor_length = img_height//2
resistor_width = resistor_length//3

resistor_center = (img_width - resistor_width*3//2, img_height//2)

top_lead_path = [(tl_length, tl_top_y + tl_thickness-1),
                 (tl_length, img_height//9),
                 (resistor_center[0], img_height//9),
                 resistor_center]

bot_lead_path = [(x,img_height-y+1) for (x,y) in top_lead_path]

lead_thickness = 2

def rgb_from_V(V):
    """
    voltage V varies -1 to +1. Return a color as a function of V.
    Color is a 3-tuple red,green,blue, each 0 to 255.
    """
    return (100+100*V, 100 - 100*V, 100-100*V)

def tup_round(tup):
    """
    round each element of a tuple to nearest integer
    """
    return tuple(int(round(x)) for x in tup)

def make_wire_surf(phase_at_left):
    """
    make a pygame surface representing a colored wire. startphase is phase
    at left side of the wire.
    """
    imgarray = [[rgb_from_V(cos(phase_at_left + 2*pi*x/wavelength))
                 for y in range(tl_thickness)] for x in range(tl_length)]
    return pg.surfarray.make_surface(asarray(imgarray))

def make_resistor_surf(phase_at_top):
    """
    make a pygame surface representing the resistor. topphase is phase at top
    """
    imgarray = [[rgb_from_V(cos(phase_at_top) * (1 - 2*y/resistor_length))
                     for y in range(resistor_length)]
                    for x in range(resistor_width)]
    surf = pg.surfarray.make_surface(asarray(imgarray))
    pg.draw.rect(surf,linecolor,surf.get_rect(),1) #1-pixel black outline
    return surf

def e_path(param, phase_top_left):
    """
    as param goes 0 to 1, this returns {'pos': (x, y), 'phase':phi},
    where (x,y) is the coordinates of the corresponding point on the electron
    dot path, and phi is the phase for an electron at that point on the path.
    phase_top_left is phase of the left side of the top wire.
    """
    d = 3 #pixels between electron path and corresponding wires
    path_length = ( 2*(tl_length - d) #transmission lines
                  + 2*(img_height//3) #left vertical leads
                  + 2*(resistor_center[0] - tl_length + 2*d + lead_thickness)
                  + 2*(resistor_length//2 - img_height//9) #right vertical leads
                  + resistor_length) #through resistor
    howfar = param * path_length
    
    #move right across top transmission line
    if howfar < tl_length - d:
        x = howfar
        y = tl_top_y - d
        phase = phase_top_left + 2 * pi * x / wavelength
        return {'pos':(x,y), 'phase':phase}
    howfar -= (tl_length - d)
    
    #move up lead
    if howfar < img_height//3:
        x = tl_length - d
        y = tl_top_y - d - howfar
        phase = phase_top_left + 2 * pi * tl_length / wavelength
        return {'pos':(x,y), 'phase':phase}
    howfar -= img_height//3
    
    #move right to above resistor
    if howfar < (resistor_center[0]- tl_length) + 2*d + lead_thickness:
        x = tl_length - d + howfar
        y = img_height//9 - d
        phase = phase_top_left + 2 * pi * tl_length / wavelength
        return {'pos':(x,y), 'phase':phase}
    howfar -= (resistor_center[0] - tl_length) + 2*d + lead_thickness
    
    #move down to top of resistor
    if howfar < (resistor_length//2 - img_height//9):
        x = resistor_center[0] + d + lead_thickness
        y = img_height//9 - d + howfar
        phase = phase_top_left + 2 * pi * tl_length / wavelength
        return {'pos':(x,y), 'phase':phase}
    howfar -= (resistor_length//2 - img_height//9)
    
    #move down resistor
    if howfar < resistor_length:
        x = resistor_center[0] + resistor_width//2 + d
        y = resistor_center[1] - resistor_length//2 + howfar
        phase = phase_top_left + 2 * pi * tl_length / wavelength
        return {'pos':(x,y), 'phase':phase}
    howfar -= resistor_length
    
    #beyond here use the mirror symmetry
    flipdata = e_path(1-param, phase_top_left)
    flipdata['pos'] = (flipdata['pos'][0], img_height - flipdata['pos'][1] + 2)
    return flipdata

def main():
    #Make and save a drawing for each frame
    filename_list = [os.path.join(directory_now, 'temp' + str(n) + '.png')
                         for n in range(frames_in_anim)]

    for frame in range(frames_in_anim):
        phase_top_left = -2 * pi * frame / frames_in_anim
        phase_top_right = phase_top_left + 2 * pi * tl_length / wavelength
        
        #initialize surface
        surf = pg.Surface((img_width,img_height))
        surf.fill(bgcolor);
        
        #draw transmission line
        top_wire_surf = make_wire_surf(phase_top_left)
        bottom_wire_surf = make_wire_surf(phase_top_left + pi)
        surf.blit(top_wire_surf, (0, tl_top_y))
        surf.blit(bottom_wire_surf, (0, tl_bot_y))
        
        #draw lead wires
        color = rgb_from_V(cos(phase_top_right))
        pg.draw.lines(surf,color,False,top_lead_path,lead_thickness)
        color = rgb_from_V(cos(phase_top_right + pi))
        pg.draw.lines(surf,color,False,bot_lead_path,lead_thickness)
        
        #draw resistor
        resistor_surf = make_resistor_surf(phase_top_right)
        surf.blit(resistor_surf, (resistor_center[0] - resistor_width//2,
                                  resistor_center[1] - resistor_length//2))
        
        #draw electrons
        num_electrons = 100
        equilibrium_params = [x/(num_electrons-1) for x in range(num_electrons)]
        phases = [e_path(a, phase_top_left)['phase'] for a in equilibrium_params]
        now_params = [equilibrium_params[i] + sin(phases[i])/(1.3*num_electrons)
                           for i in range(num_electrons)]
        coords = [e_path(a, phase_top_left)['pos'] for a in now_params]
        for coord in coords:
            pg.draw.circle(surf, ecolor, tup_round(coord), 2, 0)
        
        pg.image.save(surf, filename_list[frame])
        
    seconds_per_frame = animation_loop_seconds / frames_in_anim
    frame_delay = str(int(seconds_per_frame * 100))
    command_list = ['convert', '-delay', frame_delay, '-loop', '0'] + filename_list + ['anim.gif']
    # Use the "convert" command (part of ImageMagick) to build the animation
    subprocess.call(command_list, cwd=directory_now)
    # Earlier, we saved an image file for each frame of the animation. Now
    # that the animation is assembled, we can (optionally) delete those files
    if True:
        for filename in filename_list:
            os.remove(filename)

main()

الشروحات

أضف شرحاً من سطر واحد لما يُمثِّله هذا الملف
A lossless transmission line, terminated at an impedance-matched load resistor (box on right). Red color indicates high voltage, and blue indicates low voltage. Black dots represent electrons.

العناصر المصورة في هذا الملف

يُصوِّر

٣٠ يوليو 2012

تاريخ الملف

اضغط على زمن/تاريخ لرؤية الملف كما بدا في هذا الزمن.

زمن/تاريخصورة مصغرةالأبعادمستخدمتعليق
حالي18:50، 24 فبراير 2014تصغير للنسخة بتاريخ 18:50، 24 فبراير 2014300 × 100 (112 كيلوبايت)commonswiki>Sbyrnes321smaller file size, by switching from images2gif.py to imagemagick

ال1 ملف التالي مكررات لهذا الملف (المزيد من التفاصيل):

الصفحتان التاليتان تستخدمان هذا الملف: