هذه المقالة يتيمة. ساعد بإضافة وصلة إليها في مقالة متعلقة بها

قدم الفرس (منحنى)

من أرابيكا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
يُعطى قدم الفرس (بالأحمر) على شكل منحنى قدمي للقطع الناقص الملون بالأسود. معادلة قدم الفرس هي: 4x2+y2=(x2+y2)2

في الهندسة ، قَدَمُ الْفَرَسِ[1] (بالإنجليزية: Hippopede)‏ هو منحنى مستوي محدَّد بمعادلة من الشكل:

(x2+y2)2=cx2+dy2

حيث يفترض أن c > 0 و c > d نظرًا لأن الحالات المتبقية إما تُختزل إلى نقطة واحدة أو يمكن وضعها في الشكل المحدد بدوران. منحنيات قدم الفرس هي منحنيات مُنْطَقَة وجبرية من الدرجة 4 ومتناظرة بالنسبة للمحورين x و y .

الحالات الخاصة

عندما يكون d > 0 يكون للمنحنى شكل بيضاوي ويُعرف غالبًا باسم شكل بوث بيضاوي (Oval of Booth)، وعندما يكون d < 0 يشبه المنحنى شكل رقم ثمانية جانبيًا، أو منحنى العروتين، ويُعرف غالبًا باسم منحنى بوث ذي العروتين نسبةً إلى عالم من القرن التاسع عشر عالم الرياضيات جيمس بوث [English] الذي درسهم. حقَّق العالم اليوناني بروكلس أيضًا مع منحنيات قدم الفرس (التي يُطلق عليها أحيانًا اسم قدم الفرس لبروكلس) وإودوكسوس. من أجل d = −c، يتوافق قدم الفرس مع ومنحنى برنولي ذو عروتين [English] .

المراجع

  1. ^ Q108593221، ص. 315، QID:Q108593221